Archive for the ‘Research Groups’ Category

Qiang Huang is assistant professor at USC IE department and editor of special issue of  IIE Transactions “Quality, Sensing and Prognostics Issues in Nanomanufacturing”. He has two NSF grants related to my blog theme.

First one is “Collaborative Research: Nanostructure Growth Process Modeling and Optimal Experimental Strategies for Repeatable Fabrication of Nanostructures for Application in Photovoltaics”. Total amount awarded is 300.000 $. Here is important sections from abstract:

The research objective of this award is to establish statistics-transformed nanostructure growth process models and efficient experimental strategies for improving process repeatability in the fabrication of nanostructures for the application in photovoltaic cells. To achieve repeatable fabrication of photovoltaic cells with respect to yield (productivity) and uniformity (quality), it is essential to identify and optimize the growth conditions rooted on predictive process models. […] The methodology will be validated through controlled growth of nanowires and fabrication of photovoltaic cells.

Successful completion of the proposed research will lead to new tools and methods for improving process repeatability and yield in nanomanufacturing, particularly in the large scale fabrication of photovaic cells. […] (Emphasis by me)

Second one is called “In Situ Nanomanufacturing Process Control Through Multiscale Nanostructure Growth Modeling” Total amount awarded is 350.000 $. Here is important sections from abstract:

The objective of the proposed research is to generate knowledge of in situ nanomanufacturing process control through multiscale nanostructure growth modeling and growth of metal-oxide nanowires with excellent optical properties. Standard statistical quality control (SQC) faces new challenges of scale effects which is unique to quality control of nanofabrication processes. Particularly, key process variables, varying with location and time, are measured at macro/micro scales. The quality characteristics of nanostructures would better be characterized as space-time random field measured in nanoscale. Relating macroscale process variables to nanoscale critical quality characteristics and defects requires multiscale model integration for in situ process control. The research therefore aims to model nanofabrication process, more specifically, nanostructure growth for in situ quality control in nanomanufacturing. Novel metal-oxide nanowires will be synthesized and characterized for wide applications in nanoscale electronic and optoelectronic devices. […] (Emphasis by me)

I will be following Qiang Huang’s papers.



Read Full Post »

Tao Yuan was the chair of Reliability and Statistics Related to Nanotechnology at INFORMS 2009 San Diego conference. Today I found out that Yuan is doing interdisciplinary research with Yue Kuo. NSF awarded them 206229 $, their project title is “Nonparametric Bayesian Modeling of Reliability of Nanoelectronics “. Research has both theoretical and experimental sides. Quoting from NSF website:

Upon the successful completion of this project, new methods and tools that are critical to design and manufacture reliable nanoelectronic products will be developed. This will be the first systematic study in modeling and predicting reliability of nano products based on experimental data and nonparametric Bayesian methods which offer great flexibility and capability to address challenges in real products influencing yield and cost.

Tao Yuan previously did research on applying bayesian  analysis for determining defect rates in electronic devices.  Here is a related article. Now he will use his expertise in nanoelectronics.

Note: I will update this post, as Yuan publishes new articles.

Read Full Post »